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MECHANISM AND KINETICS OF GRINDING OF
ZIRCONIUM DIOXIDE POWDER

S. N. Pashcherenko and 1. V. Antsiferova UDC 539.215.4

A model of grinding for dispersed powders of brittle substances is proposed within the framework of a
phenomenological approach. The mechanism is established and the kinetics of grinding of a ZrO; powder

is described.

The regularities of grinding of coarsely dispersed powders are described by the empirical laws of Kirpichev-
Kick, Retinger, and Bond {1], which were found more than a hundred years ago. In finely divided systems,
aggregation of powder particles is substantial and is allowed for by the introduction of a limiting particle size ag in
these laws, modifying them arbitrarily [2]. Since the process of grinding is Markovian, one finds the probability
density function of the size distribution of particles by solution of the Fokker-Planck equation, in which the average
grinding rate is specified by one of the above laws and the diffusion coefficient is considered constant in the
dimension space [3]. Thus, at the present time there is no theory of grinding that is free of arbitrary assumptions
(the choice of the grinding law, allowance for aggregation), and, therefore, each investigation of the grinding of a
particular powder system rests substantially upon experimental data. The choice of ZrO; powder as an object of
investigation was determined by its wide use (with an average particle size of ~0.1 um) in modern ccramic
materials. This dispersed powder is usually produced by plasma-chemical or sol-gel methods. However, it is not
improbable that a substantially cheaper method of grinding can be adopted if the average value of the sizes of
particles and their dispersion in the powder that is produced by grinding are at the same level. Thercfore, in this
work, we propose and validate a model of grinding of dispersed powders based on which a mechanism of fracture
of ZrO, powder particles is established and demonstrate a procedure for producing dispersed powder mixtures by
grinding.

The grinding of ZrO; powder was studied in a model experiment on a planetary mill for a rotational velocity
of 360 rpm. The grinding time was varied from 0.25 to 5 h. The average size of the powder particles was measured
by two methods: a scdimentation method (a.) on a HORIBA CAPA-500 unit and measurement of the specific
surface of the powder (S): @; = 6/(pS), where p is the density of the particle material. Experimental data are given
in Table 1, from which it can be seen that @, is always larger than a;. Consequently, g, is the size of conglomeratcs
that arc formed as a result of particle aggregation and 4 is of the order of the size of particles that form the
conglomerates. [n the initial state, the powder consists of weakly bound conglomerates of particles that are fractured
during the first 15 min of grinding. The new conglomerates that arc formed are then fractured gradually bygrinding.

We analyze the experimental data within the framework of a phenomenological approach. We write the law
of grinding of powder particles as a quasilinear Langevin equation

da

27=A(U)+E(t),

(H

where velocity fluctuations & (1) arc a random process and d is a correlated process. We assume that £ is independent
of conglomerate size, i.c., we will consider only the grinding of mixtures of particles that arc similar in size, shape,
and internal structure. Equation (1) corresponds to the Fokker-Planck equation [4]
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TABLE 1. Granulometric Composition of ZrO; Powdcr Particles as a Function of the Grinding Time

o ) Sizes, um
Grinding time, h = = N o) (da’ dOong o A
0 70 0.4 - - -
0.25 0.4 0.1 0.3 ~ -
0.5 2.3 0.6 1.5 -1.2 ~1.0
1 1.8 - 1.5 -0.8 ~0.9
S 1.0 - 0.75 -0.02 -0.2
i 2
- 9 +Ba—§, (2)
told da da

where f(a, 1) is the probability density function of the particle size distribution. We determine the initial moments
a™(1) as follows:

a"=[d"f(a 1) da. 3
0
From (3) and (2) upon integrating by parts we obtain
W@_g 0y op 4)
ar ar & o

where account is taken of the fact that f(a, t) and the particle flux in the dimension space j = —Af + Bdf/da are

equal 1o zcro for a = « and a = 0.
The particle size distribution for large grinding times fo(a) is independent of the initial distribution and
is governed only by the law of grinding. We find it from (2) by assuming a7/ dr = 0:

1 1 4 .
fw (@) ~5expl = [ A(x)dx }. (5)
B B }

It would appear resonable that da/dtl, ., = 0; then, (4) and (5) yield

A ~f d(chxp
0 B

fi}fld.vlzexp(F(w>—F<0>'>—1=0' “
0

from which F(w) = F(0), where dF/da = A/ B. Consequently,
17 ‘ o ;
i);f;l(u)dazI~(00)——F(0):0, (7
0

The latter expression, in combination with the above statement of the cxistence of a size ag such that A(ag) =0,
imposcs restrictions on the form of the function A(a).

We find the dependence A(ae) by comparing (§) with the expression obtained by the method of the most
probable distribution from the condition of maximum information enthropy {5}

I=~(/.(a)Inf, (a)da=—1In/, (8)
0




under the additional conditions: normalization f.(a) and the law of conservation of cnergy e{a)p{a) = E, where E
is the energy dissipated, on the average, by one powder particle; p(a) is the probability of this mechanism of cnergy
dissipation by a particle of size a; e€(a) is the cnergy dissipated by the particle in fracture. Having applied the
method of Lagrangian multipliers, we find the stationary size distribution of the particles:

Jo (@)= Nexp{ = fp(@e@ ", S

where N and 8 are constants. By comparing the expressions obtained for fo(a) we find

d ) )
Al =-B-{r@e(}. (10

The value of e(a) is proportional to the surface area of the cracks formed in brittle fracture of a powder
particle of size a, i.c., e(a) ~ad/, where dy is the fractal dimensionality of the cluster of microcracks formed in the
particle prior to its fracture.

If we ignore conglomeration processes (i.c., the condition A(gg = 0)) and condition (7), from (10) we
obtain the basic empirical laws of grinding. Thus, we obtain the Kirpichev-Kick law if we consider the probability
of fracture of all particles the same, i.c., p(@) = const and the fracture is brittle: d; = 2; then A ~a. If the cnergy
supplied is dissipated in the entire volume of particles, for example, in the process of their plastic deformation
(df = 3), we obtain thc Bond law: A ~a®. If the probability of particle fracture is proportional to the breaking
stress p(a) ~op, then, since op ~K./VI and the crack length is proportional to the particle size, p ~a~ "2 Then
if the supplied energy dissipates in the entire volume via multiple nucleation of microcracks (d; = 3), we obtain
the Retinger law: A ~a?.

In finely divided grinding (see, for example, Table 1), conglomeration processes are considcrable;
therefore, the probability of fracture p(a) can be approximated, as is usually done in statistical description of the
reliability of complex systems (in this case, the conglomerate of particles is dealt with as such a system), by the
Weibull distribution [6]: p(a) ~a” 'exp(—Aa™). Then, in view of conditions (7) and A(ag) = 0, we find the law of

grinding:

(1+df— (D

a+dq—2
A (x) = qaq ST

2 (@ +df— 1)x (- N exp (= bx),

where x = a/ag, ¢ = const, b= (a + df— 1)/a. From (11), it can be seen that A(0) =0 and grows as the particle
size increases, reaching its maximum at x = x;. With a further increase in particle size, A becomes negative and
decreases, recaching its minimum at x = x;, where x 2 = (B+dy/(l—a-—-dp =
VB +d{l —a—dp?—4(1 + 1/(1 —a - dp))/ 2)“ Then A(x) grows asymptotically up to zero, remaining
negative. Particles of sizc agx, are fractured at the maximum rate, and those of apx| conglomerate at the maximum
rate. The arcas between the curve at A(x) and the axis of abscissas are equal in the interval of from 0 to g and

of from ag to .
Since the sizes of the particle conglomerates had a narrow spread (~ 1 gm), in what follows we will ignore
their size distribution. Then, the first equation of (4) yiclds a differential equation for ag:

da _
dt ~

A(a)=A(a).

According 1o the table, the grinding rate decreases with decreasing a.. The function A(w satisfies this
condition for @~ ay € {1, xz ). The maximum value of x, which is cqual to 2.718, is attained as @ ~ 0. Consequently,
ag =z a’2.718, ic., qp = 2.372.718 = 0.9 um.

From the condition of the best approximation of the experimental data by Eq. (12), we found the following
values of its parameters: a = 0.1, ag = 0.9 um, qa3+df—2(a +df— 1)~ lOz,um/scc. The fractal dimensionality of
the fracture surface dyis equal to 2, i.c., the fracturc was brittle. The results of approximation of the experimental
data are also given in the table. The Weibull function describes the probability of fracture of complex systems 6 ],



in the life of which we recognize three periods: alignment (@ < 1), when objects with internal defects arce fractured;
normal operation (a = 1); and aging (a > 1). Consequently, the ZrO; powder particles arc crushed due to defects
in the particle material structure.

According to these data, xjag = 0; x3 ~ 2.5 um. Since most of the powder particles have sizes in the interval
(agx), agxy) we can approximately describe the obtained cxperimental data by simple dependences, substituting
the linear function A = —k(x — 1) for A(x) in the interval (xy, x3). This dependence yiclds a realistic description
of conglomeration processes; however, it is agreed [7] that conglomeration proccsses proceed more actively than
grinding processes. Analysis of the proposed dependence A(x) showed that A(x;) > 1 A(xy)! for @ < 3.1; it is only
then that conglomeration is more active than grinding.

The table shows that x >> | virtually over the cntire range of grinding times, therefore, to approximate the
results of this experiment we resort 1o the approximation A = —ka. Then the solution of the first cquation of (4)
appears as: a = ag + a(0) exp (—k#). The constants were found by comparison with the experimental data:

3, =098 + 212 cxp (- 0.954r), 12 0.5h, (13)

where the length is measured in gm and the time in hours. From (5), we obtain

fo <a>~exp{—5"§(a~ao>2}- (1)

Consequently, the dispersion of the particle size distribution is D = B/k and the average a = ay. Since, according
to the experimental data (sce Table 1), a2 = VD, then B ~a8k ~2- 10_4/1m2/5cc. Then the spread of conglomerate
size due 1o random processcs in grinding is cqual to ~VB{ ~ | um, which is in agreement with cxperiment.

We obtain from (4) an cquation for the dispersion of the size distribution of particles D = a® — &2 For A

= —ka we have

D _
dr

— %D + 2B, (13)

hence D = B/k + const-cxp (—=24t). Since B/k = a(z):
D =0.96 + 0.29 cxp (- 1.917) . (16)

After grinding, the ZrO; powder particles had a fragmentary shape; consequently, fracture was preceded
by microcracking. It is agreed [6] that a microcrack at the instant it nucleates, whether the fracture mechanism is
viscous or brittle, has a length of ~ 1 x«m, which coincides in our case with gp in order of magnitude. Therefore,
the finite dispersion of the ZrO; powder is determined by gg and hence the propertics of the particle material and
the medium in which the grinding occurs. The duration of grinding and its intensity have a little effect on fo(a)
and mainly increase the number of particles of a size smaller than xj;ag. As long as a > ag, it is predominantly
particles of large fractions (¢ > aqg) that break down, since small particles, by being in the interparticle space of
large ones, are protected by them from impacts of the grinding bodies. When a becomes of the order of gy, the
proccess of grinding enters stationary stage. A fundamental decrease in powdcer dispersion can be attained by altering
the fracture mechanism so that the lattice loses its stability uniformly over the entire volume of the particle rather
than in the region of microcrack nucleation. These arc apparently the conditions of failure of a conducting wire in
its electrodynamic explosion by a supercritical pulse of electric current.

By sclecting a small fraction with ¢ < xjag we could decrease the average size of the powder particles, since
the conglomeration of particles of size a < xjag, according to (11), is small. However, for a given powder, this is
impossible, since x; = 0 and the interval [0, xjag] is so narrow that its corresponding portion of particles is
negligibly small. Therefore, an increase in dispersion for ZrO, powder is possible only at the expense of a dccfcasc
in gg with a change in the grinding medium. Since the basic process that retards the grinding of dispersed powders
is conglomeration, which is realized by forces of an clectrostatic nature, media with high diclectric permittivity

should be used.



According to the above results, dispersed ZrO, powders are highly prone to conglomeration, and, since
they are virtually not used as a single-componcnt mixture, mixturcs of components of the required chemical

composition must be ground.

CONCLUSIONS

1. A phenomenological model of the kinetics of powder grinding is proposed and the required conditions
that the cocfficient A(a) of the Fokker-Planck equation should satisfy are found.

2. All basic empirical laws of grinding and the law of grinding of fincly divided powdcrs arc derived.

3. It is established that particles of a ZrQ; powder are fractured by microcracking at defects of the matcerial
structurc and conglomerate for a < ag (ap ~ 1 um). For larger grinding times, the average particle size is ~ ag, the
dispersion is ~a%, and the law of size distribution is normal.

NOTATION

a., ds, average size of particles measured by a sedimentation method and calculated based on mcasuring
the specific surface; p, density; a, size of powder particles; A(a), average grinding rate; ap, minimum size of the
conglomerate is determined from the condition A(Ag) = 0; x,, xz, points of the extremum of the function A(x), x
= a/ag; f(a, 1), probability density function of the size distribution of particles; B, diffusion coefficient in the
dimension space; p(a), probability of fracture for a particle of size a; e(@), encrgy dissipated by a particle of size
a in grinding; /, information entropy; dy, fractal dimensionality of cluster of microcracks; D, dispersion of particle

size distribution.
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