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M E C H A N I S M  A N D  K I N E T I C S  OF G R I N D I N G  OF 
Z I R C O N I U M  D I O X I D E  P O W D E R  

S. N. Pashcherenko and 1. V. Antsiferova UDC 539.215.4 

A model of grinding for dispersed powders of brittle substances is proposed within the framework of a 

phenomenologtcal approach. The mechanism is established and the kinetics of grinding of a Zr02 powder 

is described. 

The regularities of grinding of coarsely dispersed powders are described by the empirical laws of Kirpichev- 

Kick, Retinger, and Bond [1 1, which were found more than a hundred years ago. In finely divided systems, 

aggregation of powder particles is substantial and is allowed for by the introduction of a limiting particle size a0 in 

these laws, modifying them arbitrarily [2 ]. Since the process of grinding is Markovian, one finds the probability 

density function of the size distribution of particles by solution of the Fokker-Planck equation, in which the average 

grinding rate is specified by one of the above laws and the diffusion coefficient is considered constant in the 

dimension space [3 I. Thus, at the present time there is no theory of grinding that is free of arbitrary assumptions 

(the choice of the grinding law, allowance for aggregation), and, therefore, each investigation of the grinding of a 

particular powder system rests substantially upon experimental data. The choice of ZrO2 powder as an object of 

investigation was determined by its wide use (with an average particle size of -0 .1  1~m) in modern ceramic 

materials. This dispersed powder is usually produced by plasma-chemical or sol-gel methods. However, it is not 

improbable that a substantially cheaper method of grinding can be adopted if the average value of the sizes of 

particles and their dispersion in the powder that is produced by grinding are at the same level. Therefore, in this 

work, we propose and validate a model of grinding of dispersed powders based on which a mechanism of fracture 

of ZrO2 powder particles is established and demonstrate a procedure for producing dispersed powder mixtures by 

grinding. 
The grinding of Zr02 powder was studied in a model experiment on a planetary mill for a rotational velocity 

of 360 rpm. The grinding time was varied from 0.25 to 5 h. The average size of the powder particles was measured 

by two methods: a sedimentation method (~c) on a HORIBA CAPA-500 unit and measurement of the specific 

surface of the powder (S): ~s = 6/(pS) ,  where p is the density of the particle material. Experimental data are given 

in Table 1, from which it can be seen that ~c is always larger than ~s. Consequently, ~c is the size of conglomerates 

that arc formed as a result of particle aggregation and ~s is of the order of the size of particles that form the 

conglomerates. In the initial state, the powder consists of weakly bound conglomerates of particles that are fractured 

during the first 15 min of grinding. The new conglomerates that are formed are then fractured gradually bygrinding. 

We analyze the experimental data within the framework of a phenomenological approach. We write the law 

of grinding of powder particles as a quasilinear Langevin equation 

J_9_" = ,4 ( . )  + _~ (t)  ( I )  
dt  

where velocity fluctuations ~(t) are a random process and d is a correlated process. We assume that ~ is independent 

of conglomerate size, i.e., wc will consider only the grinding of mixtures of particles that are similar in size, shape, 

and internal structure. Equation (1) corresponds to the Fokker-Planck equation [41 
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TABLE 1. Oranulomet r ic  Composi t ion of ZrO2 Powder  Part icles as a Function of the Gr ind ing  Time 

Sizes, /zm 
Gr ind ing  time, h 

-ac G "ZD( ac) 

0 

0.25 

0.5 

1 

5 

70 

0.4 

2.3 

1.8 

1.0 

0.4 

O.l 

0.6 

0.3 

1.5 

1.5 

0.75 

( d~c /  dt)exp 

- 1 . 2  

- 0 . 8  

- 0 . 0 2  

( d ~ c /  dt)calc 

- 1 . 0  

-O.9 

- 0 . 2  

O/_ 0 (A f) + B 02/ (2) 
c)t Oa c)a 2 ' 

where f ( a ,  t) is the probabi l i ty  dens i ty  function of the particle size dis t r ibut ion.  We de te rmine  the ini t ial  moments  

am(t) as follows: 

o 

From (3) and (2) upon integrat ing by parts  we obtain 

0a _ ,4, --;~a2 = 2au4 + 2B,  (4) 
Ot a[ 

where account is taken of the fact that f (a ,  t) and the particle flux in the dimension space j = - / i f  4- B d f / d a  are 

equal to zero for a = oo and a = 0. 

The part icle size dis t r ibut ion for large gr inding times f ~ (a )  is independen t  of the initial d is t r ibut ion  and 

is governed only by the law of grinding.  We find it from (2) by assuming af/Or = 0: 

1 I ~ A (x) dx }. ~5) f~ (a ) -~exp  B 0 

It would appear resonable that O-~/8tlt=~ = 0; then, (4) and (5) yield 

- da"  B exp ~ d x  = e x p ( F ( ~ ) -  F ( 0 ) ) -  1 = 0 ,  (6) 
0 o 

from which F(oo) -- F(0),  where d F / d a  = A / B .  Consequent ly ,  

1 ~ 
f A ( a )  d a =  F ( ~ ) -  F ( 0 ) = 0 ,  (7) 

The latter expression, in combination with the above statement of the cxistence of a size a o such that A(a0) = 0, 

imposes restrictions on the form of the function A(a). 

Wc find the dependence A(a) by comparing (5) with the expression obtained by the method of the most 

probable distribution from the condition of maximum information enthropy [5 ] 

oo 

1 = - f f ~  (a) l n f ~  (a) da = - Info~ (8) 
0 



under  the add i t iona l  condi t ions:  normal izat ion f |  and the law of conservation of energy ~ = E, where  E 

is the energy d i ss ipa ted ,  on the average,  by one powder particle; p(a)  is the probabi l i ty  of this mechanism of energy 

diss ipat ion by a part icle of size a; c(a) is the energy diss ipated  by the particle in fracture. Having appl ied  the 

method of I~g rang ian  mult ipl iers ,  we find the s ta t ionary  size dis t r ibut ion of the particles: 

foe (a) = N exp t - / 3 p  (a) e ( a )  ~,  (9) 

where N and/3  are  constants .  By compar ing the express ions  ob ta ined  for fo~(a) we find 

d 

The  value of eta)  is proport ional  to the surface area  of the cracks formed in ba t t l e  fracture of a powder 

part icle of size a, i.e., Eta) - a d/, where df  is the fractal d imensional i ty  of the cluster  of microcracks formed in the 

part icle  prior  to its fracture.  

If we ignore conglomerat ion processes (i.e., the condit ion A(a  0 = 0)) and  condit ion (7), from (10) we 

obta in  the basic empirical  laws of gr inding.  Thus ,  we obtain the Kirpichev-Kick law if we consider  the probabi l i ty  

of f racture  of all part icles the same,  i.e., p(a)  = const and the fracture is brittle: df = 2; then A - a .  If the energy 

suppl ied is d i ss ipa ted  in the ent i re  volume of part icles,  for example ,  in the process of their  plastic deformat ion 

(dr = 3), we obta in  the Bond law: A - a  2. If the probabi l i ty  of particle fracture is proport ional  to the breaking 
- 1 . / 2  

s t ress  p(a)  -Op ,  then,  since crp - K c / V 7  and the crack length is proport ional  to the particle size, p - a  . Then 

if the suppl ied  energy d iss ipa tes  in the ent ire  volume via mult iple nucleation of microcracks ( d / =  3), we obtain 

the Ret inger  law: A - a  3~. 

In f inely d iv ided  g r ind ing  (see, for example ,  Tab le  1), conglomera t ion  processes  are  cons ide rab le ;  

therefore,  the probabi l i ty  of fracture p(a)  can be approx imated ,  as is usually done in statist ical  descr ipt ion of the 

rel iabi l i ty  of complex sys tems  (in this case, the conglomerate  of particles is deal t  with as such a sys tem) ,  by the 

Weibull  d is t r ibut ion  [6 ]: p(a)  N a ' ~ - l e x p ( - J . a a ) .  Then ,  in view of condit ions (7) and  A(ao) = 0, we find the law of 

gr inding:  

A (x)  = qc~ +df-2  (cz + d [ - -  [).v a+df -2  (1 -- X a) exp (-- 3xa ) ,  (11) 

where x = a / a  O, q = const,  b = (a + d r -  l ) / a .  From (11), it can be seen that .4(0) = 0 find grows as the part icle 

size increases ,  reaching its maximum at x = xl .  With a fur ther  increase  in part icle size, A becomes negative and 

d e c r e a s e s ,  r e a c h i n g  i t s  m i n i m u m  at  x = x2, w h e r e  Xl, 2 = ((3 + d f / ( l  - a - df) + 

',/(3 + d/t1 - a - dfl 2 - 4(1 + 1/(1 - a - d f ) ) ) /  2) b~. Then A(x) grows asymptot ica l ly  up to zero, remain ing  

negative. Part icles of size aox2 are  f rac tured  at the maximum rate, and  those of a0.q conglomerate  at the maximum 

rate. The  areas  between the curve at A ( x )  and the axis of abscissas  fire equal in the interval of from 0 to ao and 

of from a 0 to co. 

Since the sizes of the part icle conglomerates  had a narrow spread  ( -  1/~m), in what follows we will ignorc 

their  size d is t r ibut ion.  Then ,  the first equation of (4) yields a different ial  equation for ao: 

d~ (12) 
d 7  = A (a)  = ,4 ( a ) .  

According to the table,  the gr inding  rate decreases  with decreas ing ac. The  function A(~) sat isf ies this 

condit ion for ~}.. a 0 E II ,  x2 ]. The maximum value of x2, which is equal to 2.718, is a t ta ined as a + 0. Consequent ly ,  

a0 >- 5 / 2 . 7 1 8 ,  i.e., a0 >- 2 . 3 / 2 . 7 1 8  = 0 . 0 ~ m .  

From the condit ion of the best approximat ion  of the exper imenta l  da ta  bv Eq. t12), we found the following 

values of its parameters :  a = 0.1, ao = 0.9/~m, qt~+df-2(cz + d f -  l)  - 102 ,u rn / s e e .  The  fractal d imens iona l i ty  of 

the fracture surface d / i s  equal to 2, i.e., the fracture was britt le.  The  results of approximat ion of the exper imenta l  

data  are  also given in the table. The  Weibull function descr ibes  the probabi l i ty  of fracturc of complex sys tems  [6 ], 



in the life of which we recognize three periods: a l ignment  (a < 1), when objects with in ternal  defects  a re  fractured;  

normal operat ion (a = 1); and  aging (a > 1). Consequent ly ,  the ZrO2 powder  particles a re  c rushed  due to defects 

in the particle mater ia l  s tructure.  

According to these data ,  x lao  ~ 0; x2 - 2 . 5  l~m. Since most of the powder part icles have sizes in the interval 

(aox 1, aox 2) we can approx imate ly  descr ibe  the obta ined  exper imenta l  data  by simple dependences ,  subs t i tu t ing  

the l inear  function A = - k ( x  - 1) for A ( x )  in the interval (xt,  x2). This  dependence  yields a real is t ic  descr ipt ion 

of conglomerat ion processes;  however, it is agreed  17 ] that conglomerat ion processes proceed more actively than 

gr inding processes.  Analys is  of the proposed dependence  A ( x )  showed that A(x I) > IA(x2) l for a < 3.1; it is only 

then that conglomerat ion is more active than grinding.  

The table shows thal  x >> 1 vir tual ly over the ent ire  range of gr inding times, therefore,  to approx ima te  the 

results  of this exper iment  we resorl  to the approximat ion  A = - k a .  Then the solution of the first equation of (4) 

appears  as: ~ -- ao + a(0) exp ( - k t ) .  The conslanls  were found by comparison with the exper imenta l  data:  

~ c = 0 . 9 8  + 2.12 exp ( -  0.954 0 , t > 0 . 5 h ,  (13) 

where the length is measured  in/~m and the time in hours. From (5), we obtain 

f~  ( a ) - e x p  - ~ ( a -  a0) 2 

Consequent ly ,  the dispers ion of the part icle size dis t r ibut ion is D = B / k  and the average ~ = a0. Since, according 

to the exper imenta l  data  (see Table  1), ~ = v'D, then B - a 2 k  - 2 . 1 0 - 4 / ~ m 2 / s e c .  Then the spread  of conglomerate  

size due to random processes in gr inding is equal to - ~  - 1/~m, which is in agreement  with exper iment .  

We obtain from (4) an equation for the dispersion of the size dis t r ibut ion of part icles D = a 2 - a -7. For A 

- ka  we have 

d D  _ 2 k D  + 2B,  (15) 
dt  

hence D = B / k  + cons t . exp  ( - 2 k t ) .  Since B / k  = a2: 

D =  0.96 + 0 . 2 9 e x p ( -  1.91t). (10) 

After gr inding,  the ZrO2 powder part icles had a f ragmentary  shape;  consequent ly ,  fracture was preceded 

by microcracking.  It is agreed [6 ] that a microcrack at the instant  it nucleates,  whether  the fracture mechanism is 

viscous or brit t le,  has a length of - I/Lm, which coincides in our case with ao in o rder  of magni tude .  Therefore ,  

the finite d ispers ion of the ZrO2 powder is de te rmined  by ao and hence the propert ies  of the particle mater ia l  and 

the medium in which the gr inding occurs. The  durat ion of gr inding and its intensi ty  have a little effect on f ~ ( a )  

and mainly increase the number  of part icles of a size smal ler  than x l a  0. As long as ~ > ao, it is p redominan t ly  

particles of large fractions (a > a o) that break down, since small part icles,  by, being in the in terpar t ic le  space of 

large ones,  are  protecled by them from impacts of the gr inding bodies.  When ~ becomes of the o rde r  of a0, the 

process of gr inding enters  s ta t ionary  stage. A fundamenta l  decrease  in powder dispersion can be a t ta ined by al ter ing 

the fracture mechanism so that the lattice loses its stabil i ty uniformly over the entire volume of the particle rather 

than in the region of microcrack nucleation. These are apparently the conditions of failure of a conducting wire in 

its electrodynamic explosion by a supercritical pulse of electric current. 

By selecting a small fraction with a < x l a  o we could decrease lhe average size of the powder particles, since 

the conglomeration of particles of size a < xlao, according to (11), is small. However, for a given powder, this is 

impossible, since xl = 0 and the interval I0, x la0]  is so narrow that its corresponding portion of particles is 

negligibly small. Therefore, an increase in dispersion for ZrO2 powder is possible only at the expense of a decrease 

in ao with a change in the grinding medium. Since the basic process that retards the grinding of dispersed powders 

is conglomeration, which is realized by forces of an electrostatic nature, media with high dielectric permitt ivi ty 

should be used. 



According to the above results, dispersed ZrO2 powders are highly prone to conglomeration, and, since 

they are virtually not used as a single-component mixture, mixtures of components of the required chemical 

composition must be ground. 

C O N C L U S I O N S  

1. A phenomenological model of the kinetics of powder grinding is proposed and the required conditions 

that the coefficient A(a) of the Fokker-Planck equation should satisfy are found. 

2. All basic empirical laws of grinding and the law of grinding of finely divided powders are derived. 

3. It is established that particles of a ZrO2 powder are fractured by microcracking at defects of the material 

structure and conglomerate for a -< ao (ao - 1 tim). For larger grinding times, the average particle size is - a0, the 

dispersion is -a~ ,  and the law of size distribution is normal. 

N O T A T I O N  

ac, as, average size of particles measured by a sedimentation method and calculated based on measuring 

the specific surface; p, density; a, size of powder particles; A(a), average grinding rate; a0, minimum size of the 

conglomerate is determined from the condition A(A O) = 0; x 1, x2, points of the extremum of the function A(x), x 

= a/ao; f(a,  t), probability density function of the size distribution of particles; 13, diffusion coefficient in the 

dimension space; p(a) ,  probability of fracture for a particle of size a; e(a), energy dissipated by a particle of size 

a in grinding; I, information entropy; d/, fractal dimensionality of cluster of microcracks; D, dispersion of particle 

size distribution. 
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